Venue
- ICLR 2023
Date
- 2023
MECTA: Memory-Economic Continual Test-Time Model Adaptation
Junyuan Hong
Jiayu Zhou*
* External authors
ICLR 2023
2023
Abstract
Continual Test-time Adaptation (CTA) is a promising art to secure accuracy gains in continually-changing environments. The state-of-the-art adaptations improve out-of-distribution model accuracy via computation-efficient online test-time gradient descents but meanwhile cost about times of memory versus the inference, even if only a small portion of parameters are updated. Such high memory consumption of CTA substantially impedes wide applications of advanced CTA on memory-constrained devices. In this paper, we provide a novel solution, dubbed MECTA, to drastically improve the memory efficiency of gradient-based CTA. Our profiling shows that the major memory overhead comes from the intermediate cache for back-propagation, which scales by the batch size, channel, and layer number. Therefore, we propose to reduce batch sizes, adopt an adaptive normalization layer to maintain stable and accurate predictions, and stop the back-propagation caching heuristically. On the other hand, we prune the networks to reduce the computation and memory overheads in optimization and recover the parameters afterward to avoid forgetting. The proposed MECTA is efficient and can be seamlessly plugged into state-of-the-art CTA algorithms at negligible overhead on computation and memory. On three datasets, CIFAR10, CIFAR100, and ImageNet, MECTA improves the accuracy by at least 8.5% with constrained memory and significantly reduces the memory cots of ResNet50 on ImageNet by at least 70% without sacrificing accuracy. Our code will be published upon acceptance.
Related Publications
Federated learning (FL) promotes decentralized training while prioritizing data confidentiality. However, its application on resource-constrained devices is challenging due to the high demand for computation and memory resources for training deep learning models. Neural netw…
Recent text-to-image diffusion models have shown surprising performance in generating high-quality images. However, concerns have arisen regarding the unauthorized data usage during the training or fine-tuning process. One example is when a model trainer collects a set of im…
Federated learning (FL) enhances data privacy with collaborative in-situ training on decentralized clients. Nevertheless, FL encounters challenges due to non-independent and identically distributed (non-i.i.d) data, leading to potential performance degradation and hindered c…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.