Authors

* External authors

Venue

Date

Share

Building Minimal and Reusable Causal State Abstractions for Reinforcement Learning

Zizhao Wang*

Caroline Wang*

Xuesu Xiao*

Yuke Zhu*

Peter Stone

* External authors

AAAI 2024

2024

Abstract

Two desiderata of reinforcement learning (RL) algorithms are the ability to learn from relatively little experience and the ability to learn policies that generalize to a range of problem specifications. In factored state spaces, one approach towards achieving both goals is to learn state abstractions, which only keep the necessary variables for learning the tasks at hand. This paper introduces Causal Bisimulation Modeling (CBM), a method that learns the causal relationships in the dynamics and reward functions for each task to derive a minimal, task-specific abstraction. CBM leverages and improves implicit modeling to train a high-fidelity causal dynamics model that can be reused for all tasks in the same environment. Empirical validation on manipulation environments and Deepmind Control Suite reveals that CBM's learned implicit dynamics models identify the underlying causal relationships and state abstractions more accurately than explicit ones. Furthermore, the derived state abstractions allow a task learner to achieve near-oracle levels of sample efficiency and outperform baselines on all tasks.

Related Publications

Minimum Coverage Sets for Training Robust Ad Hoc Teamwork Agents

AAAI, 2024
Arrasy Rahman*, Jiaxun Cui*, Peter Stone

Robustly cooperating with unseen agents and human partners presents significant challenges due to the diverse cooperative conventions these partners may adopt. Existing Ad Hoc Teamwork (AHT) methods address this challenge by training an agent with a population of diverse tea…

Learning Optimal Advantage from Preferences and Mistaking it for Reward

AAAI, 2024
W. Bradley Knox*, Stephane Hatgis-Kessell*, Sigurdur Orn Adalgeirsson*, Serena Booth*, Anca Dragan*, Peter Stone, Scott Niekum*

We consider algorithms for learning reward functions from human preferences over pairs of trajectory segments---as used in reinforcement learning from human feedback (RLHF)---including those used to fine tune ChatGPT and other contemporary language models. Most recent work o…

VaryNote: A Method to Automatically Vary the Number of Notes in Symbolic Music

CMMR, 2023
Juan M. Huerta*, Bo Liu*, Peter Stone

Automatically varying the number of notes in symbolic music has various applications in assisting music creators to embellish simple tunes or to reduce complex music to its core idea. In this paper, we formulate the problem of varying the number of notes while preserving the…

  • HOME
  • Publications
  • Building Minimal and Reusable Causal State Abstractions for Reinforcement Learning

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.