Authors

* External authors

Venue

Date

Share

Skill-Critic: Refining Learned Skills for Hierarchical Reinforcement Learning

Ce Hao*

Catherine Weaver*

Chen Tang*

Kenta Kawamoto

Masayoshi Tomizuka*

Wei Zhan*

* External authors

RAL 2024

2024

Abstract

Hierarchical reinforcement learning (RL) can accelerate long-horizon decision-making by temporally abstracting a policy into multiple levels. Promising results in sparse reward environments have been seen with skills , i.e. sequences of primitive actions. Typically, a skill latent space and policy are discovered from offline data. However, the resulting low-level policy can be unreliable due to low-coverage demonstrations or distribution shifts. As a solution, we propose the Skill-Critic algorithm to fine-tune the low-level policy in conjunction with high-level skill selection. Our Skill-Critic algorithm optimizes both the low-level and high-level policies; these policies are initialized and regularized by the latent space learned from offline demonstrations to guide the parallel policy optimization. We validate Skill-Critic in multiple sparse-reward RL environments, including a new sparse-reward autonomous racing task in Gran Turismo Sport. The experiments show that Skill-Critic's low-level policy fine-tuning and demonstration-guided regularization are essential for good performance.

Related Publications

Outracing Champion Gran Turismo Drivers with Deep Reinforcement Learning

Nature, 2022
Peter Wurman, Samuel Barrett, Kenta Kawamoto, James MacGlashan, Kaushik Subramanian, Thomas Walsh, Roberto Capobianco, Alisa Devlic, Franziska Eckert, Florian Fuchs, Leilani Gilpin, Piyush Khandelwal, Varun Kompella, Hao Chih Lin, Patrick MacAlpine, Declan Oller, Takuma Seno, Craig Sherstan, Michael D. Thomure, Houmehr Aghabozorgi, Leon Barrett, Rory Douglas, Dion Whitehead Amago, Peter Dürr, Peter Stone, Michael Spranger, Hiroaki Kitano

Many potential applications of artificial intelligence involve making real-time decisions in physical systems while interacting with humans. Automobile racing represents an extreme example of these conditions; drivers must execute complex tactical manoeuvres to pass or block…

Expert Human-Level Driving in Gran Turismo Sport Using Deep Reinforcement Learning with Image-based Representation

NeurIPS, 2021
Ryuji Imamura, Takuma Seno, Kenta Kawamoto, Michael Spranger

When humans play virtual racing games, they use visual environmental information on the game screen to understand the rules within the environments. In contrast, a state-of-the-art realistic racing game AI agent that outperforms human players does not use image-based environ…

  • HOME
  • Publications
  • Skill-Critic: Refining Learned Skills for Hierarchical Reinforcement Learning

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.