Authors

* External authors

Venue

Date

Share

HQ-VAE: Hierarchical Discrete Representation Learning with Variational Bayes

Yuhta Takida

Yukara Ikemiya

Takashi Shibuya

Kazuki Shimada

Woosung Choi

Chieh-Hsin Lai

Naoki Murata

Toshimitsu Uesaka

Kengo Uchida

Wei-Hsiang Liao

Yuki Mitsufuji*

* External authors

TMLR-2024

2024

Abstract

Vector quantization (VQ) is a technique to deterministically learn features with discrete codebook representations. It is commonly performed with a variational autoencoding model, VQ-VAE, which can be further extended to hierarchical structures for making high-fidelity reconstructions. However, such hierarchical extensions of VQ-VAE often suffer from the codebook/layer collapse issue, where the codebook is not efficiently used to express the data, and hence degrades reconstruction accuracy. To mitigate this problem, we propose a novel unified framework to stochastically learn hierarchical discrete representation on the basis of the variational Bayes framework, called hierarchically quantized variational autoencoder (HQ-VAE). HQ-VAE naturally generalizes the hierarchical variants of VQ-VAE, such as VQ-VAE-2 and residual-quantized VAE (RQ-VAE), and provides them with a Bayesian training scheme. Our comprehensive experiments on image datasets show that HQ-VAE enhances codebook usage and improves reconstruction performance. We also validated HQ-VAE in terms of its applicability to a different modality with an audio dataset.



Related Publications

BigVSAN: Enhancing GAN-based Neural Vocoders with Slicing Adversarial Network

ICASSP, 2024
Takashi Shibuya, Yuhta Takida, Yuki Mitsufuji*

Generative adversarial network (GAN)-based vocoders have been intensively studied because they can synthesize high-fidelity audio waveforms faster than real-time. However, it has been reported that most GANs fail to obtain the optimal projection for discriminating between re…

Enhancing Semantic Communication with Deep Generative Models -- An ICASSP Special Session Overview

ICASSP, 2024
Eleonora Grassucci*, Yuki Mitsufuji*, Ping Zhang*, Danilo Comminiello*

Generative adversarial network (GAN)-based vocoders have been intensively studied because they can synthesize high-fidelity audio waveforms faster than real-time. However, it has been reported that most GANs fail to obtain the optimal projection for discriminating between re…

Diffusion-Based Speech Enhancement with Joint Generative and Predictive Decoders

ICASSP, 2024
Hao Shi*, Kazuki Shimada, Masato Hirano*, Takashi Shibuya, Yuichiro Koyama*, Zhi Zhong*, Shusuke Takahashi*, Tatsuya Kawahara*, Yuki Mitsufuji*

Diffusion-based speech enhancement (SE) has been investigated recently, but its decoding is very time-consuming. One solution is to initialize the decoding process with the enhanced feature estimated by a predictive SE system. However, this two-stage method ignores the compl…

  • HOME
  • Publications
  • HQ-VAE: Hierarchical Discrete Representation Learning with Variational Bayes

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.