Authors
- Yuyuan Li*
- Chaochao Chen*
- Yizhao Zhang*
- Weiming Liu*
- Lingjuan Lyu
- Xiaolin Zheng*
- Dan Meng*
- Jun Wang*
* External authors
Venue
- NeurIPS 2023
Date
- 2023
UltraRE: Enhancing RecEraser for Recommendation Unlearning via Error Decomposition
Yuyuan Li*
Chaochao Chen*
Yizhao Zhang*
Weiming Liu*
Xiaolin Zheng*
Dan Meng*
Jun Wang*
* External authors
NeurIPS 2023
2023
Abstract
With growing concerns regarding privacy in machine learning models, regulations have committed to granting individuals the right to be forgotten while mandating companies to develop non-discriminatory machine learning systems, thereby fueling the study of the machine unlearning problem. Our attention is directed toward a practical unlearning scenario, i.e., recommendation unlearning. As the state-of-the-art framework, i.e., RecEraser, naturally achieves full unlearning completeness, our objective is to enhance it in terms of model utility and unlearning efficiency. In this paper, we rethink RecEraser from an ensemble-based perspective and focus on its three potential losses, i.e., redundancy, relevance, and combination. Under the theoretical guidance of the above three losses, we propose a new framework named UltraRE, which simplifies and powers RecEraser for recommendation tasks. Specifically, for redundancy loss, we incorporate transport weights in the clustering algorithm to optimize the equilibrium between collaboration and balance while enhancing efficiency; for relevance loss, we ensure that sub-models reach convergence on their respective group data; for combination loss, we simplify the combination estimator without compromising its efficacy. Extensive experiments on three real-world datasets demonstrate the effectiveness of UltraRE.
Related Publications
Federated learning (FL) promotes decentralized training while prioritizing data confidentiality. However, its application on resource-constrained devices is challenging due to the high demand for computation and memory resources for training deep learning models. Neural netw…
Recent text-to-image diffusion models have shown surprising performance in generating high-quality images. However, concerns have arisen regarding the unauthorized data usage during the training or fine-tuning process. One example is when a model trainer collects a set of im…
Federated learning (FL) enhances data privacy with collaborative in-situ training on decentralized clients. Nevertheless, FL encounters challenges due to non-independent and identically distributed (non-i.i.d) data, leading to potential performance degradation and hindered c…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.