Authors

* External authors

Venue

Date

Share

Where Did I Come From? Origin Attribution of AI-Generated Images

Zhenting Wang

Chen Chen

Yi Zeng

Lingjuan Lyu

Shiqing Ma*

* External authors

NeurIPS 2023

2023

Abstract

Image generation techniques have been gaining increasing attention recently, but concerns have been raised about the potential misuse and intellectual property (IP) infringement associated with image generation models. It is, therefore, necessary to analyze the origin of images by inferring if a specific image was generated by a particular model, i.e., origin attribution. Existing methods only focus on specific types of generative models and require additional procedures during the training phase or generation phase. This makes them unsuitable for pre-trained models that lack these specific operations and may impair generation quality. To address this problem, we first develop an alteration-free and model-agnostic origin attribution method via reverse-engineering on image generation models, i.e., inverting the input of a particular model for a specific image. Given a particular model, we first analyze the differences in the hardness of reverse-engineering tasks for generated samples of the given model and other images. Based on our analysis, we then propose a method that utilizes the reconstruction loss of reverse-engineering to infer the origin. Our proposed method effectively distinguishes between generated images of a specific generative model and other images, i.e., images generated by other models and real images.

Related Publications

FedMef: Towards Memory-efficient Federated Dynamic Pruning

CVPR, 2024
Hong Huang, Weiming Zhuang, Chen Chen, Lingjuan Lyu

Federated learning (FL) promotes decentralized training while prioritizing data confidentiality. However, its application on resource-constrained devices is challenging due to the high demand for computation and memory resources for training deep learning models. Neural netw…

DIAGNOSIS: Detecting Unauthorized Data Usages in Text-to-image Diffusion Models

ICLR, 2024
Zhenting Wang, Chen Chen, Lingjuan Lyu, Dimitris N. Metaxas*, Shiqing Ma*

Recent text-to-image diffusion models have shown surprising performance in generating high-quality images. However, concerns have arisen regarding the unauthorized data usage during the training or fine-tuning process. One example is when a model trainer collects a set of im…

FedWon: Triumphing Multi-domain Federated Learning Without Normalization

ICLR, 2024
Weiming Zhuang, Lingjuan Lyu

Federated learning (FL) enhances data privacy with collaborative in-situ training on decentralized clients. Nevertheless, FL encounters challenges due to non-independent and identically distributed (non-i.i.d) data, leading to potential performance degradation and hindered c…

  • HOME
  • Publications
  • Where Did I Come From? Origin Attribution of AI-Generated Images

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.