A Pathway Towards Responsible AI Generated Content
IJCAI 2023
2023
Abstract
AI Generated Content (AIGC) has received tremendous attention within the past few years, with content ranging from image, text, to audio, video, etc. Meanwhile, AIGC has become a double-edged sword and recently received much criticism regarding its responsible usage. In this article, we focus on three main concerns that may hinder the healthy development and deployment of AIGC in practice, including risks from privacy; bias, toxicity, misinformation; and intellectual property (IP). By documenting known and potential risks, as well as any possible misuse scenarios of AIGC, the aim is to sound the alarm of potential risks and misuse, help society to eliminate obstacles, and promote the more ethical and secure deployment of AIGC.
Related Publications
Federated learning (FL) promotes decentralized training while prioritizing data confidentiality. However, its application on resource-constrained devices is challenging due to the high demand for computation and memory resources for training deep learning models. Neural netw…
Recent text-to-image diffusion models have shown surprising performance in generating high-quality images. However, concerns have arisen regarding the unauthorized data usage during the training or fine-tuning process. One example is when a model trainer collects a set of im…
Federated learning (FL) enhances data privacy with collaborative in-situ training on decentralized clients. Nevertheless, FL encounters challenges due to non-independent and identically distributed (non-i.i.d) data, leading to potential performance degradation and hindered c…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.