Venue
- IJCAI 2023
Date
- 2023
RAIN: RegulArization on Input and Network for Black-Box Domain Adaptation
Qucheng Peng*
Zhengming Ding*
Lichao Sun*
Chen Chen
* External authors
IJCAI 2023
2023
Abstract
Source-Free domain adaptation transits the source-trained model towards target domain without exposing the source data, trying to dispel these concerns about data privacy and security. However, this paradigm is still at risk of data leakage due to adversarial attacks on the source model. Hence, the Black-Box setting only allows to use the outputs of source model, but still suffers from overfitting on the source domain more severely due to source model's unseen weights. In this paper, we propose a novel approach named RAIN (RegulArization on Input and Network) for Black-Box domain adaptation from both input-level and network-level regularization. For the input-level, we design a new data augmentation technique as Phase MixUp, which highlights task-relevant objects in the interpolations, thus enhancing input-level regularization and class consistency for target models. For network-level, we develop a Subnetwork Distillation mechanism to transfer knowledge from the target subnetwork to the full target network via knowledge distillation, which thus alleviates overfitting on the source domain by learning diverse target representations. Extensive experiments show that our method achieves state-of-the-art performance on several cross-domain benchmarks under both single- and multi-source black-box domain adaptation.
Related Publications
Federated learning (FL) promotes decentralized training while prioritizing data confidentiality. However, its application on resource-constrained devices is challenging due to the high demand for computation and memory resources for training deep learning models. Neural netw…
Recent text-to-image diffusion models have shown surprising performance in generating high-quality images. However, concerns have arisen regarding the unauthorized data usage during the training or fine-tuning process. One example is when a model trainer collects a set of im…
Federated learning (FL) enhances data privacy with collaborative in-situ training on decentralized clients. Nevertheless, FL encounters challenges due to non-independent and identically distributed (non-i.i.d) data, leading to potential performance degradation and hindered c…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.