Venue
- USENIX Security '23
Date
- 2023
Meta-Sift: How to Sift Out a Clean Subset in the Presence of Data Poisoning?
Yi Zeng
Minzhou Pan*
Himanshu Jahagirdar*
Ruoxi Jia*
* External authors
USENIX Security '23
2023
Abstract
External data sources are increasingly being used to train machine learning (ML) models as the data demand increases. However, the integration of external data into training poses data poisoning risks, where malicious providers manipulate their data to compromise the utility or integrity of the model. Most data poisoning defenses assume access to a set of clean data (referred to as the base set), which could be obtained through trusted sources. But it also becomes common that entire data sources for an ML task are untrusted (e.g., Internet data). In this case, one needs to identify a subset within a contaminated dataset as the base set to support these defenses.
This paper starts by examining the performance of defenses when poisoned samples are mistakenly mixed into the base set. We analyze five representative defenses that use base sets and find that their performance deteriorates dramatically with less than 1% poisoned points in the base set. These findings suggest that sifting out a base set with \emph{high precision} is key to these defenses' performance. Motivated by these observations, we study how precise existing automated tools and human inspection are at identifying clean data in the presence of data poisoning. Unfortunately, neither effort achieves the precision needed that enables effective defenses. Worse yet, many of the outcomes of these methods are worse than random selection.
In addition to uncovering the challenge, we take a step further and propose a practical countermeasure, Meta-Sift. Our method is based on the insight that existing poisoning attacks shift data distributions, resulting in high prediction loss when training on the clean portion of a poisoned dataset and testing on the corrupted portion. Leveraging the insight, we formulate a bilevel optimization to identify clean data and further introduce a suite of techniques to improve the efficiency and precision of the identification. Our evaluation shows that Meta-Sift can sift a clean base set with 100% precision under a wide range of poisoning threats. The selected base set is large enough to give rise to successful defense when plugged into the existing defense techniques.
Related Publications
Federated learning (FL) promotes decentralized training while prioritizing data confidentiality. However, its application on resource-constrained devices is challenging due to the high demand for computation and memory resources for training deep learning models. Neural netw…
Recent text-to-image diffusion models have shown surprising performance in generating high-quality images. However, concerns have arisen regarding the unauthorized data usage during the training or fine-tuning process. One example is when a model trainer collects a set of im…
Federated learning (FL) enhances data privacy with collaborative in-situ training on decentralized clients. Nevertheless, FL encounters challenges due to non-independent and identically distributed (non-i.i.d) data, leading to potential performance degradation and hindered c…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.