Authors

* External authors

Venue

Date

Share

Fast Federated Machine Unlearning with Nonlinear Functional Theory

Tianshi Che*

Yang Zhou*

Zijie Zhang*

Lingjuan Lyu

Ji Liu*

Da Yan*

Dejing Dou*

Jun Huan*

* External authors

ICML 2023

2023

Abstract

Federated machine unlearning (FMU) aims to remove the influence of a specified subset of training data upon request from a trained federated learning model. Despite achieving remarkable performance, existing FMU techniques suffer from inefficiency due to two sequential operations of training and retraining/unlearning on large-scale datasets. Our prior study, PCMU, was proposed to improve the efficiency of centralized machine unlearning (CMU) with certified guarantees, by simultaneously executing the training and unlearning operations. This paper proposes a fast FMU algorithm, FFMU, for improving the FMU efficiency while maintaining the unlearning quality. The PCMU method is leveraged to train a local machine learning (MU) model on each edge device. We propose to employ nonlinear functional analysis techniques to refine the local MU models as output functions of a Nemytskii operator. We conduct theoretical analysis to derive that the Nemytskii operator has a global Lipschitz constant, which allows us to bound the difference between two MU models regarding the distance between their gradients. Based on the Nemytskii operator and average smooth local gradients, the global MU model on the server is guaranteed to achieve close performance to each local MU model with the certified guarantees.

Related Publications

FedMef: Towards Memory-efficient Federated Dynamic Pruning

CVPR, 2024
Hong Huang, Weiming Zhuang, Chen Chen, Lingjuan Lyu

Federated learning (FL) promotes decentralized training while prioritizing data confidentiality. However, its application on resource-constrained devices is challenging due to the high demand for computation and memory resources for training deep learning models. Neural netw…

DIAGNOSIS: Detecting Unauthorized Data Usages in Text-to-image Diffusion Models

ICLR, 2024
Zhenting Wang, Chen Chen, Lingjuan Lyu, Dimitris N. Metaxas*, Shiqing Ma*

Recent text-to-image diffusion models have shown surprising performance in generating high-quality images. However, concerns have arisen regarding the unauthorized data usage during the training or fine-tuning process. One example is when a model trainer collects a set of im…

FedWon: Triumphing Multi-domain Federated Learning Without Normalization

ICLR, 2024
Weiming Zhuang, Lingjuan Lyu

Federated learning (FL) enhances data privacy with collaborative in-situ training on decentralized clients. Nevertheless, FL encounters challenges due to non-independent and identically distributed (non-i.i.d) data, leading to potential performance degradation and hindered c…

  • HOME
  • Publications
  • Fast Federated Machine Unlearning with Nonlinear Functional Theory

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.