Authors
- Zijie Zhang*
- Bo Li*
- Chen Chen
- Lingjuan Lyu
- Shuang Wu*
- Shouhong Ding*
- Chao Wu*
* External authors
Venue
- AAAI 2023
Date
- 2023
Delving into the Adversarial Robustness of Federated Learning
Zijie Zhang*
Bo Li*
Chen Chen
Shuang Wu*
Shouhong Ding*
Chao Wu*
* External authors
AAAI 2023
2023
Abstract
In Federated Learning (FL), models are as fragile as centrally trained models against adversarial examples. However, the adversarial robustness of federated learning remains largely unexplored. This paper casts light on the challenge of adversarial robustness of federated learning. To facilitate a better understanding of the adversarial vulnerability of the existing FL methods, we conduct comprehensive robustness evaluations on various attacks and adversarial training methods. Moreover, we reveal the negative impacts induced by directly adopting adversarial training in FL, which seriously hurts the test accuracy, especially in non-IID settings. In this work, we propose a novel algorithm called Decision Boundary based Federated Adversarial Training (DBFAT), which consists of two components (local re-weighting and global regularization) to improve both accuracy and robustness of FL systems. Extensive experiments on multiple datasets demonstrate that DBFAT consistently outperforms other baselines under both IID and non-IID settings.
Related Publications
Federated learning (FL) promotes decentralized training while prioritizing data confidentiality. However, its application on resource-constrained devices is challenging due to the high demand for computation and memory resources for training deep learning models. Neural netw…
Recent text-to-image diffusion models have shown surprising performance in generating high-quality images. However, concerns have arisen regarding the unauthorized data usage during the training or fine-tuning process. One example is when a model trainer collects a set of im…
Federated learning (FL) enhances data privacy with collaborative in-situ training on decentralized clients. Nevertheless, FL encounters challenges due to non-independent and identically distributed (non-i.i.d) data, leading to potential performance degradation and hindered c…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.