Authors
- Xiaofei Sun*
- Xiaoya Li*
- Yuxian Meng*
- Xiang Ao*
- Lingjuan Lyu
- Jiwei Li*
- Tianwei Zhang*
* External authors
Venue
- AAAI 2023
Date
- 2023
Defending Against Backdoor Attacks in Natural Language Generation
Xiaofei Sun*
Xiaoya Li*
Yuxian Meng*
Xiang Ao*
Jiwei Li*
Tianwei Zhang*
* External authors
AAAI 2023
2023
Abstract
The frustratingly fragile nature of neural network models make current natural language generation (NLG) systems prone to backdoor attacks and generate malicious sequences that could be sexist or offensive. Unfortunately, little effort has been invested to how backdoor attacks can affect current NLG models and how to defend against these attacks. In this work, by giving a formal definition of backdoor attack and defense, we investigate this problem on two important NLG tasks, machine translation and dialog generation. Tailored to the inherent nature of NLG models (e.g., producing a sequence of coherent words given contexts), we design defending strategies against attacks.
We find that testing the backward probability of generating sources given targets yields effective defense performance against all different types of attacks, and is able to handle the {\it one-to-many} issue in many NLG tasks such as dialog generation. We hope that this work can raise the awareness of backdoor risks concealed in deep NLG systems and inspire more future work (both attack and defense) towards this direction.
Related Publications
Federated learning (FL) promotes decentralized training while prioritizing data confidentiality. However, its application on resource-constrained devices is challenging due to the high demand for computation and memory resources for training deep learning models. Neural netw…
Recent text-to-image diffusion models have shown surprising performance in generating high-quality images. However, concerns have arisen regarding the unauthorized data usage during the training or fine-tuning process. One example is when a model trainer collects a set of im…
Federated learning (FL) enhances data privacy with collaborative in-situ training on decentralized clients. Nevertheless, FL encounters challenges due to non-independent and identically distributed (non-i.i.d) data, leading to potential performance degradation and hindered c…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.