Authors

* External authors

Venue

Date

Share

Privacy for Free: How does Dataset Condensation Help Privacy?

Tian Dong

Bo Zhao*

Lingjuan Lyu

* External authors

ICML 2022

2022

Abstract

To prevent unintentional data leakage, research community has resorted to data generators that can produce differentially private data for model training. However, for the sake of the data privacy, existing solutions suffer from either expensive training cost or poor generalization performance. Therefore, we raise the question whether training efficiency and privacy can be achieved simultaneously. In this work, we for the first time identify that dataset condensation (DC) which is originally designed for improving training efficiency can be a better solution to replace data generators for private data generation, thus providing privacy for free. To demonstrate the privacy benefit of DC, we build a connection between DC and differential privacy (DP), and theoretically prove on linear feature extractors (and then extended to non-linear feature extractors) that the existence of one sample has limited impact (O(m/n)) on the parameter distribution of networks trained on m samples synthesized from n (n >> m) raw data by DC. We also empirically validate the vision privacy and membership privacy of DC-synthesized data by launching both the loss-based and the state-of-the-art likelihood-based membership inference attacks. We envision this work as a milestone for data-efficient and privacy-preserving machine learning.

Related Publications

FedMef: Towards Memory-efficient Federated Dynamic Pruning

CVPR, 2024
Hong Huang, Weiming Zhuang, Chen Chen, Lingjuan Lyu

Federated learning (FL) promotes decentralized training while prioritizing data confidentiality. However, its application on resource-constrained devices is challenging due to the high demand for computation and memory resources for training deep learning models. Neural netw…

DIAGNOSIS: Detecting Unauthorized Data Usages in Text-to-image Diffusion Models

ICLR, 2024
Zhenting Wang, Chen Chen, Lingjuan Lyu, Dimitris N. Metaxas*, Shiqing Ma*

Recent text-to-image diffusion models have shown surprising performance in generating high-quality images. However, concerns have arisen regarding the unauthorized data usage during the training or fine-tuning process. One example is when a model trainer collects a set of im…

FedWon: Triumphing Multi-domain Federated Learning Without Normalization

ICLR, 2024
Weiming Zhuang, Lingjuan Lyu

Federated learning (FL) enhances data privacy with collaborative in-situ training on decentralized clients. Nevertheless, FL encounters challenges due to non-independent and identically distributed (non-i.i.d) data, leading to potential performance degradation and hindered c…

  • HOME
  • Publications
  • Privacy for Free: How does Dataset Condensation Help Privacy?

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.