Venue
- ACM Transactions on Intelligent Systems and Technology
Date
- 2022
FedCTR: Federated Native Ad CTR Prediction with Cross Platform User Behavior Data
Chuhan Wu*
Fangzhao Wu*
Yongfeng Huang*
Xing Xie*
* External authors
ACM Transactions on Intelligent Systems and Technology
2022
Abstract
Native ad is a popular type of online advertisement which has similar forms with the native content displayed on websites. Native ad CTR prediction is useful for improving user experience and platform revenue. However, it is challenging due to the lack of explicit user intent, and users' behaviors on the platform with native ads may not be sufficient to infer their interest in ads. Fortunately, user behaviors exist on many online platforms and they can provide complementary information for user interest mining. Thus, leveraging multi-platform user behaviors is useful for native ad CTR prediction. However, user behaviors are highly privacy-sensitive and the behavior data on different platforms cannot be directly aggregated due to user privacy concerns and data protection regulations like GDPR. Existing CTR prediction methods usually require centralized storage of user behavior data for user modeling and cannot be directly applied to the CTR prediction task with multi-platform user behaviors. In this paper, we propose a federated native ad CTR prediction method named FedCTR, which can learn user interest representations from their behaviors on multiple platforms in a privacy-preserving way. On each platform a local user model is used to learn user embeddings from the local user behaviors on that platform. The local user embeddings from different platforms are uploaded to a server for aggregation, and the aggregated user embeddings are sent to the ad platform for CTR prediction. Besides, we apply LDP and DP techniques to the local and aggregated user embeddings respectively for better privacy protection. Moreover, we propose a federated framework for model training with distributed models and user behaviors. Extensive experiments on real-world dataset show that FedCTR can effectively leverage multi-platform user behaviors for native ad CTR prediction in a privacy-preserving manner.
Related Publications
Federated learning (FL) promotes decentralized training while prioritizing data confidentiality. However, its application on resource-constrained devices is challenging due to the high demand for computation and memory resources for training deep learning models. Neural netw…
Recent text-to-image diffusion models have shown surprising performance in generating high-quality images. However, concerns have arisen regarding the unauthorized data usage during the training or fine-tuning process. One example is when a model trainer collects a set of im…
Federated learning (FL) enhances data privacy with collaborative in-situ training on decentralized clients. Nevertheless, FL encounters challenges due to non-independent and identically distributed (non-i.i.d) data, leading to potential performance degradation and hindered c…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.