Venue
- ACM Transactions on Intelligent Systems and Technology
Date
- 2022
FedBERT: When Federated Learning Meets Pre-Training
Yuanyishu Tian*
Yao Wan*
Dezhong Yao*
Hai Jin*
Lichao Sun*
* External authors
ACM Transactions on Intelligent Systems and Technology
2022
Abstract
The fast growth of pre-trained models (PTMs) has brought natural language processing to a new era, which becomes a dominant technique for various natural language processing (NLP) applications. Every user can download weights of PTMs, then fine-tune the weights on a task on the local side. However, the pre-training of a model relies heavily on accessing a large-scale of training data and requires a vast amount of computing resources. These strict requirements make it impossible for any single client to pre-train such a model. In order to grant clients with limited computing capability to participate in pre-training a large model, in this paper, we propose a new learning approach FedBERT that takes advantage of the federated learning and split learning approaches, resorting to pre-training BERT in a federated way. FedBERT can prevent sharing the raw data information and obtain excellent performance. Extensive experiments on seven GLUE tasks demonstrate that FedBERT can maintain its effectiveness without communicating the sensitive local data of clients.
Related Publications
Federated learning (FL) promotes decentralized training while prioritizing data confidentiality. However, its application on resource-constrained devices is challenging due to the high demand for computation and memory resources for training deep learning models. Neural netw…
Recent text-to-image diffusion models have shown surprising performance in generating high-quality images. However, concerns have arisen regarding the unauthorized data usage during the training or fine-tuning process. One example is when a model trainer collects a set of im…
Federated learning (FL) enhances data privacy with collaborative in-situ training on decentralized clients. Nevertheless, FL encounters challenges due to non-independent and identically distributed (non-i.i.d) data, leading to potential performance degradation and hindered c…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.