Authors

* External authors

Venue

Date

Share

Protecting Intellectual Property of Language Generation APIs with Lexical Watermark

Xuanli He*

Qiongkai Xu*

Lingjuan Lyu

Fangzhao Wu*

Chenguang Wang*

* External authors

AAAI-2022

2022

Abstract

Nowadays, due to the breakthrough in natural language generation (NLG), including machine translation, document summarization, image captioning, etc NLG models have been encapsulated in cloud APIs to serve over half a billion people worldwide and process over one hundred billion word generations per day. Thus, NLG APIs have already become essential profitable services in many commercial companies. Due to the substantial financial and intellectual investments, service providers adopt a pay-as-you-use policy to promote sustainable market growth. However, recent works have shown that cloud platforms suffer from financial losses imposed by model extraction attacks, which aim to imitate the functionality and utility of the victim services, thus violating the intellectual property (IP) of cloud APIs. This work targets at protecting IP of NLG APIs by identifying the attackers who have utilized watermarked responses from the victim NLG APIs. However, most existing watermarking techniques are not directly amenable for IP protection of NLG APIs. To bridge this gap, we first present a novel watermarking method for text generation APIs by conducting lexical modification to the original outputs. Compared with the competitive baselines, our watermark approach achieves better identifiable performance in terms of p-value, with fewer semantic losses. In addition, our watermarks are more understandable and intuitive to humans than the baselines. Finally, the empirical studies show our approach is also applicable to queries from different domains, and is effective on the attacker trained on a mixture of the corpus which includes less than 10% watermarked samples.

Related Publications

FedMef: Towards Memory-efficient Federated Dynamic Pruning

CVPR, 2024
Hong Huang, Weiming Zhuang, Chen Chen, Lingjuan Lyu

Federated learning (FL) promotes decentralized training while prioritizing data confidentiality. However, its application on resource-constrained devices is challenging due to the high demand for computation and memory resources for training deep learning models. Neural netw…

DIAGNOSIS: Detecting Unauthorized Data Usages in Text-to-image Diffusion Models

ICLR, 2024
Zhenting Wang, Chen Chen, Lingjuan Lyu, Dimitris N. Metaxas*, Shiqing Ma*

Recent text-to-image diffusion models have shown surprising performance in generating high-quality images. However, concerns have arisen regarding the unauthorized data usage during the training or fine-tuning process. One example is when a model trainer collects a set of im…

FedWon: Triumphing Multi-domain Federated Learning Without Normalization

ICLR, 2024
Weiming Zhuang, Lingjuan Lyu

Federated learning (FL) enhances data privacy with collaborative in-situ training on decentralized clients. Nevertheless, FL encounters challenges due to non-independent and identically distributed (non-i.i.d) data, leading to potential performance degradation and hindered c…

  • HOME
  • Publications
  • Protecting Intellectual Property of Language Generation APIs with Lexical Watermark

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.