Authors

* External authors

Venue

Date

Share

Gradient Driven Rewards to Guarantee Fairness in Collaborative Machine Learning

Xu Xinyi*

Lingjuan Lyu

Xingjun Ma*

Chenglin Miao*

Chuan-Sheng Foo*

Bryan Kian Hsiang Low*

* External authors

NeurIPS-2021

2021

Abstract

Collaborative machine learning provides a promising framework for different agents to pool their resources (e.g., data) for a common learning task. In realistic settings where agents are self-interested and not altruistic, they may be unwilling to share data or model without adequate rewards. Furthermore, as the data/model the agents share may differ in quality, designing rewards which are fair to them is important so they do not feel exploited and discouraged from sharing. In this paper, we investigate this problem in gradient-based collaborative machine learning. We propose a novel cosine gradient Shapley to evaluate the agents’ contributions and design commensurate rewards in the form of better models. Compared to existing baselines, our method is more efficient and does not require a validation dataset. We provide theoretical fairness guarantees and empirically validate the effectiveness of our method.

Related Publications

FedMef: Towards Memory-efficient Federated Dynamic Pruning

CVPR, 2024
Hong Huang, Weiming Zhuang, Chen Chen, Lingjuan Lyu

Federated learning (FL) promotes decentralized training while prioritizing data confidentiality. However, its application on resource-constrained devices is challenging due to the high demand for computation and memory resources for training deep learning models. Neural netw…

DIAGNOSIS: Detecting Unauthorized Data Usages in Text-to-image Diffusion Models

ICLR, 2024
Zhenting Wang, Chen Chen, Lingjuan Lyu, Dimitris N. Metaxas*, Shiqing Ma*

Recent text-to-image diffusion models have shown surprising performance in generating high-quality images. However, concerns have arisen regarding the unauthorized data usage during the training or fine-tuning process. One example is when a model trainer collects a set of im…

FedWon: Triumphing Multi-domain Federated Learning Without Normalization

ICLR, 2024
Weiming Zhuang, Lingjuan Lyu

Federated learning (FL) enhances data privacy with collaborative in-situ training on decentralized clients. Nevertheless, FL encounters challenges due to non-independent and identically distributed (non-i.i.d) data, leading to potential performance degradation and hindered c…

  • HOME
  • Publications
  • Gradient Driven Rewards to Guarantee Fairness in Collaborative Machine Learning

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.