Authors

Venue

Date

Share

Considerations for Ethical Speech Recognition Datasets

Orestis Papakyriakopoulos

Alice Xiang

WSDM 2023

2023

Abstract

Speech AI Technologies are largely trained on publicly available datasets or by the massive web-crawling of speech. In both cases, data acquisition focuses on minimizing collection effort, without necessarily taking the data subjects’ protection or user needs into consideration. This results to models that are not robust when used on users who deviate from the dominant demographics in the train- ing set, discriminating individuals having different dialects, accents, speaking styles, and disfluencies. In this talk, we use automatic speech recognition as a case study and examine the properties that ethical speech datasets should possess towards responsible AI ap- plications. We showcase diversity issues, inclusion practices, and necessary considerations that can improve trained models, while facilitating model explainability and protecting users and data sub- jects. We argue for the legal & privacy protection of data subjects, targeted data sampling corresponding to user demographics & needs, appropriate meta data that ensure explainability & account- ability in cases of model failure, and the sociotechnical & situated model design. We hope this talk can inspire researchers & practi- tioners to design and use more human-centric datasets in speech technologies and other domains, in ways that empower and respect users, while improving machine learning models’ robustness and utility.

Related Publications

Not My Voice! A Taxonomy of Ethical and Safety Harms of Speech Generators

FaccT, 2024
Wiebke Hutiri*, Orestis Papakyriakopoulos, Alice Xiang

The rapid and wide-scale adoption of AI to generate human speech poses a range of significant ethical and safety risks to society that need to be addressed. For example, a growing number of speech generation incidents are associated with swatting attacks in the United States…

Ethical Considerations for Responsible Data Curation

NeurIPS, 2023
Jerone Andrews, Dora Zhao, William Thong, Apostolos Modas, Orestis Papakyriakopoulos, Alice Xiang

Human-centric computer vision (HCCV) data curation practices often neglect privacy and bias concerns, leading to dataset retractions and unfair models. HCCV datasets constructed through nonconsensual web scraping lack crucial metadata for comprehensive fairness and robustnes…

Beyond Skin Tone: A Multidimensional Measure of Apparent Skin Color

ICCV, 2023
William Thong, Przemyslaw Joniak*, Alice Xiang

This paper strives to measure apparent skin color in computer vision, beyond a unidimensional scale on skin tone. In their seminal paper Gender Shades, Buolamwini and Gebru have shown how gender classification systems can be biased against women with darker skin tones. While…

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.