Venue
- NeurIPS 2023
Date
- 2023
f-Policy Gradients: A General Framework for Goal-Conditioned RL using f-Divergences
Siddhant Agarwal*
Ishan Durugkar
Amy Zhang*
* External authors
NeurIPS 2023
2023
Abstract
Goal-Conditioned RL problems provide sparse rewards where the agent receives a reward signal only when it has achieved the goal, making exploration a difficult problem. Several works augment this sparse reward with a learned dense reward function, but this can lead to suboptimality in exploration and misalignment of the task. Moreover, recent works have demonstrated that effective shaping rewards for a particular problem can depend on the underlying learning algorithm. Our work ($f$-PG or $f$-Policy Gradients) shows that minimizing f-divergence between the agent's state visitation distribution and the goal can give us an optimal policy. We derive gradients for various f-divergences to optimize this objective. This objective provides dense learning signals for exploration in sparse reward settings. We further show that entropy maximizing policy optimization for commonly used metric-based shaping rewards like L2 and temporal distance can be reduced to special cases of f-divergences, providing a common ground to study such metric-based shaping rewards. We compare $f$-Policy Gradients with standard policy gradients methods on a challenging gridworld as well as the Point Maze environments.
Related Publications
Two desiderata of reinforcement learning (RL) algorithms are the ability to learn from relatively little experience and the ability to learn policies that generalize to a range of problem specifications. In factored state spaces, one approach towards achieving both goals is …
Robustly cooperating with unseen agents and human partners presents significant challenges due to the diverse cooperative conventions these partners may adopt. Existing Ad Hoc Teamwork (AHT) methods address this challenge by training an agent with a population of diverse tea…
We consider algorithms for learning reward functions from human preferences over pairs of trajectory segments---as used in reinforcement learning from human feedback (RLHF)---including those used to fine tune ChatGPT and other contemporary language models. Most recent work o…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.