Authors

* External authors

Venue

Date

Share

Model-Based Meta Automatic Curriculum Learning.

Zifan Xu*

Yulin Zhang*

Shahaf S. Shperberg*

Reuth Mirsky*

Yuqian Jiang*

Bo Liu*

Peter Stone

* External authors

CoLLAs 2023

2023

Abstract

Curriculum learning (CL) has been widely explored to facilitate the learning of hard-exploration tasks in reinforcement learning (RL) by training a sequence of easier tasks, often called a curriculum. While most curricula are built either manually or automatically based on heuristics, e.g. choosing a training task which is barely beyond the current abilities of the learner, the fact that similar tasks might benefit from similar curricula motivates us to explore meta-learning as a technique for curriculum generation or teaching for a distribution of similar tasks. This paper formulates the meta CL problem that requires a meta-teacher to generate the curriculum which will assist the student to train toward any given target task from a task distribution based on the similarity of these tasks to one another. We propose a model-based meta automatic curriculum learning algorithm (MM-ACL) that learns to predict the performance improvement on one task when the student is trained on another, given the current status of the student. This predictor can then be used to generate the curricula for different target tasks. Our empirical results demonstrate that MM-ACL outperforms the state-of-theart CL algorithms in a grid-world domain and a more complex visual-based navigation domain in terms of sample efficiency.

Related Publications

Building Minimal and Reusable Causal State Abstractions for Reinforcement Learning

AAAI, 2024
Zizhao Wang*, Caroline Wang*, Xuesu Xiao*, Yuke Zhu*, Peter Stone

Two desiderata of reinforcement learning (RL) algorithms are the ability to learn from relatively little experience and the ability to learn policies that generalize to a range of problem specifications. In factored state spaces, one approach towards achieving both goals is …

Minimum Coverage Sets for Training Robust Ad Hoc Teamwork Agents

AAAI, 2024
Arrasy Rahman*, Jiaxun Cui*, Peter Stone

Robustly cooperating with unseen agents and human partners presents significant challenges due to the diverse cooperative conventions these partners may adopt. Existing Ad Hoc Teamwork (AHT) methods address this challenge by training an agent with a population of diverse tea…

Learning Optimal Advantage from Preferences and Mistaking it for Reward

AAAI, 2024
W. Bradley Knox*, Stephane Hatgis-Kessell*, Sigurdur Orn Adalgeirsson*, Serena Booth*, Anca Dragan*, Peter Stone, Scott Niekum*

We consider algorithms for learning reward functions from human preferences over pairs of trajectory segments---as used in reinforcement learning from human feedback (RLHF)---including those used to fine tune ChatGPT and other contemporary language models. Most recent work o…

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.