Authors

* External authors

Venue

Date

Share

Kinematic coordinations capture learning during human-exoskeleton interaction

Keya Ghonasgi*

Reuth Mirsky*

Nisha Bhargava*

Adrian M Haith*

Peter Stone

Ashish D Deshpande*

* External authors

Scientific Reports

2023

Abstract

Human–exoskeleton interactions have the potential to bring about changes in human behavior for physical rehabilitation or skill augmentation. Despite signifcant advances in the design and control of these robots, their application to human training remains limited. The key obstacles to the design of such training paradigms are the prediction of human–exoskeleton interaction efects and the selection of interaction control to afect human behavior. In this article, we present a method to elucidate behavioral changes in the human–exoskeleton system and identify expert behaviors correlated with a task goal. Specifcally, we observe the joint coordinations of the robot, also referred to as kinematic coordination behaviors, that emerge from human–exoskeleton interaction during learning. We demonstrate the use of kinematic coordination behaviors with two task domains through a set of three human-subject studies. We fnd that participants (1) learn novel tasks within the exoskeleton environment, (2) demonstrate similarity of coordination during successful movements within participants, (3) learn to leverage these coordination behaviors to maximize success within participants, and (4) tend to converge to similar coordinations for a given task strategy across participants. At a high level, we identify task-specifc joint coordinations that are used by diferent experts for a given task goal. These coordinations can be quantifed by observing experts and the similarity to these coordinations can act as a measure of learning over the course of training for novices. The observed expert coordinations may further be used in the design of adaptive robot interactions aimed at teaching a participant the expert behaviors.

Related Publications

Building Minimal and Reusable Causal State Abstractions for Reinforcement Learning

AAAI, 2024
Zizhao Wang*, Caroline Wang*, Xuesu Xiao*, Yuke Zhu*, Peter Stone

Two desiderata of reinforcement learning (RL) algorithms are the ability to learn from relatively little experience and the ability to learn policies that generalize to a range of problem specifications. In factored state spaces, one approach towards achieving both goals is …

Minimum Coverage Sets for Training Robust Ad Hoc Teamwork Agents

AAAI, 2024
Arrasy Rahman*, Jiaxun Cui*, Peter Stone

Robustly cooperating with unseen agents and human partners presents significant challenges due to the diverse cooperative conventions these partners may adopt. Existing Ad Hoc Teamwork (AHT) methods address this challenge by training an agent with a population of diverse tea…

Learning Optimal Advantage from Preferences and Mistaking it for Reward

AAAI, 2024
W. Bradley Knox*, Stephane Hatgis-Kessell*, Sigurdur Orn Adalgeirsson*, Serena Booth*, Anca Dragan*, Peter Stone, Scott Niekum*

We consider algorithms for learning reward functions from human preferences over pairs of trajectory segments---as used in reinforcement learning from human feedback (RLHF)---including those used to fine tune ChatGPT and other contemporary language models. Most recent work o…

  • HOME
  • Publications
  • Kinematic coordinations capture learning during human-exoskeleton interaction

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.