Authors
- Xiaohan Zhang*
- Saeid Amiri*
- Jivko Sinapov*
- Jesse Thomason*
- Peter Stone
- Shiqi Zhang*
* External authors
Venue
- Autonomous Robots
Date
- 2023
Multimodal Embodied Attribute Learning by Robots for Object-Centric Action Policies.
Xiaohan Zhang*
Saeid Amiri*
Jivko Sinapov*
Jesse Thomason*
Shiqi Zhang*
* External authors
Autonomous Robots
2023
Abstract
Robots frequently need to perceive object attributes, such as red, heavy, and empty, using multimodal exploratory behaviors, such as look, lift, and shake. One possible way for robots to do so is to learn a classifier for each perceivable attribute given an exploratory behavior. Once the attribute classifiers are learned, they can be used by robots to select actions and identify attributes of new objects, answering questions, such as “Is this object red and empty?” In this article, we introduce a robot interactive perception problem, called Multimodal Embodied Attribute Learning (meal), and explore solutions to this new problem. Under different assumptions, there are two classes of meal problems. offline- meal problems are defined in this article as learning attribute classifiers from pre-collected data, and sequencing actions towards attribute identification under the challenging trade-off between information gains and exploration action costs. For this purpose, we introduce Mixed Observability Robot Control (morc), an algorithm for offline- meal problems, that dynamically constructs both fully and partially observable components of the state for multimodal attribute identification of objects. We further investigate a more challenging class of meal problems, called online- meal, where the robot assumes no pre-collected data, and works on both attribute classification and attribute identification at the same time. Based on morc, we develop an algorithm called Information-Theoretic Reward Shaping (morc-itrs) that actively addresses the trade-off between exploration and exploitation in online- meal problems. morc and morc-itrs are evaluated in comparison with competitive meal baselines, and results demonstrate the superiority of our methods in learning efficiency and identification accuracy
Related Publications
Two desiderata of reinforcement learning (RL) algorithms are the ability to learn from relatively little experience and the ability to learn policies that generalize to a range of problem specifications. In factored state spaces, one approach towards achieving both goals is …
Robustly cooperating with unseen agents and human partners presents significant challenges due to the diverse cooperative conventions these partners may adopt. Existing Ad Hoc Teamwork (AHT) methods address this challenge by training an agent with a population of diverse tea…
We consider algorithms for learning reward functions from human preferences over pairs of trajectory segments---as used in reinforcement learning from human feedback (RLHF)---including those used to fine tune ChatGPT and other contemporary language models. Most recent work o…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.