Authors
- Siddharth Desai*
- Ishan Durugkar
- Haresh Karnan*
- Garrett Warnell*
- Josiah Hanna*
- Peter Stone
* External authors
Venue
- NeurIPS-2020
Date
- 2020
An Imitation from Observation Approach to Transfer Learning with Dynamics Mismatch
Siddharth Desai*
Ishan Durugkar
Haresh Karnan*
Garrett Warnell*
Josiah Hanna*
* External authors
NeurIPS-2020
2020
Abstract
We examine the problem of transferring a policy learned in a source environment to a target environment with different dynamics, particularly in the case where it is critical to reduce the amount of interaction with the target environment during learning. This problem is particularly important in sim-to-real transfer because simulators inevitably model real-world dynamics imperfectly. In this paper, we show that one existing solution to this transfer problem-- grounded action transformation --is closely related to the problem of imitation from observation (IfO): learning behaviors that mimic the observations of behavior demonstrations. After establishing this relationship, we hypothesize that recent state-of-the-art approaches from the IfO literature can be effectively repurposed for grounded transfer learning. To validate our hypothesis we derive a new algorithm -- generative adversarial reinforced action transformation (GARAT) -- based on adversarial imitation from observation techniques. We run experiments in several domains with mismatched dynamics, and find that agents trained with GARAT achieve higher returns in the target environment compared to existing black-box transfer methods.
Related Publications
Two desiderata of reinforcement learning (RL) algorithms are the ability to learn from relatively little experience and the ability to learn policies that generalize to a range of problem specifications. In factored state spaces, one approach towards achieving both goals is …
Robustly cooperating with unseen agents and human partners presents significant challenges due to the diverse cooperative conventions these partners may adopt. Existing Ad Hoc Teamwork (AHT) methods address this challenge by training an agent with a population of diverse tea…
We consider algorithms for learning reward functions from human preferences over pairs of trajectory segments---as used in reinforcement learning from human feedback (RLHF)---including those used to fine tune ChatGPT and other contemporary language models. Most recent work o…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.