Authors

* External authors

Venue

Date

Share

Understanding Deep RL agent decisions: a novel interpretable approach with trainable prototypes

Caterina Borzillo*

Alessio Ragno*

Roberto Capobianco

* External authors

XAI.it 2023 @ AIXIA

2023

Abstract

Deep reinforcement learning (DRL) models have shown great promise in various applications, but their practical adoption in critical domains is limited due to their opaque decision-making processes. To address this challenge, explainable AI (XAI) techniques aim to enhance transparency and interpretability of black-box models. However, most current interpretable systems focus on supervised learning problems, leaving reinforcement learning relatively unexplored. This paper extends the work of PW-Net, an interpretable wrapper model for DRL agents inspired by image classification methodologies. We introduce Shared-PW-Net, an interpretable deep learning model that features a fully trainable prototype layer. Unlike PW-Net, Shared-PW-Net does not rely on pre-existing prototypes. Instead, it leverages the concept of ProtoPool to automatically learn general prototypes assigned to actions during training. Additionally, we propose a novel prototype initialization method that significantly improves the model’s performance. Through extensive experimentation, we demonstrate that our Shared-PW-Net achieves the same reward performance as existing methods without requiring human intervention. Our model’s fully trainable prototype layer, coupled with the innovative prototype initialization approach, contributes to a clearer and more interpretable decision-making process. The code for this work is publicly available for further exploration and applications.

Related Publications

Towards a fuller understanding of neurons with Clustered Compositional Explanations

NeurIPS, 2023
Biagio La Rosa*, Leilani H. Gilpin*, Roberto Capobianco

Compositional Explanations is a method for identifying logical formulas of concepts that approximate the neurons' behavior. However, these explanations are linked to the small spectrum of neuron activations used to check the alignment (i.e., the highest ones), thus lacking c…

Memory Replay For Continual Learning With Spiking Neural Networks

IEEE MSLP, 2023
Michela Proietti*, Alessio Ragno*, Roberto Capobianco

Two of the most impressive features of biological neural networks are their high energy efficiency and their ability to continuously adapt to varying inputs. On the contrary, the amount of power required to train top-performing deep learning models rises as they become more …

Explainable AI in drug discovery: self-interpretable graph neural network for molecular property prediction using concept whi…

Machine Learning, 2023
Michela Proietti*, Alessio Ragno*, Biagio La Rosa*, Rino Ragno*, Roberto Capobianco

Molecular property prediction is a fundamental task in the field of drug discovery. Several works use graph neural networks to leverage molecular graph representations. Although they have been successfully applied in a variety of applications, their decision process is not t…

  • HOME
  • Publications
  • Understanding Deep RL agent decisions: a novel interpretable approach with trainable prototypes

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.