Venue
- NeSy 2023
Date
- 2023
Visual Reward Machines
Elena Umili*
Francesco Argenziano*
Aymeric Barbin*
* External authors
NeSy 2023
2023
Abstract
Non-markovian Reinforcement Learning (RL) tasks are extremely hard to solve, because intelligent agents must consider the entire history of state-action pairs to act rationally in the environment. Most works use Linear Temporal Logic (LTL) to specify temporally-extended tasks. This approach applies only in finite and discrete state environments or continuous problems for which a mapping between the continuous state and a symbolic interpretation is known as a symbol grounding function. In this work, we define Visual Reward Machines (VRM), an automata-based neurosymbolic framework that can be used for both reasoning and learning in non-symbolic non-markovian RL domains. VRM is a fully neural but interpretable system, that is based on the probabilistic relaxation of Moore Machines. Results show that VRMs can exploit ungrounded symbolic temporal knowledge to outperform baseline methods based on RNNs in non-markovian RL tasks.
Related Publications
Compositional Explanations is a method for identifying logical formulas of concepts that approximate the neurons' behavior. However, these explanations are linked to the small spectrum of neuron activations used to check the alignment (i.e., the highest ones), thus lacking c…
Two of the most impressive features of biological neural networks are their high energy efficiency and their ability to continuously adapt to varying inputs. On the contrary, the amount of power required to train top-performing deep learning models rises as they become more …
Molecular property prediction is a fundamental task in the field of drug discovery. Several works use graph neural networks to leverage molecular graph representations. Although they have been successfully applied in a variety of applications, their decision process is not t…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.