Authors

* External authors

Venue

Date

Share

Learning Transferable Policies for Autonomous Planetary Landing via Deep Reinforcement Learning

Giulia Ciabatti*

Shreyansh Daftry*

Roberto Capobianco

* External authors

Ascend 2021 by AIAA

2021

Abstract

In this work, we develop an application for autonomous landing, exploiting the properties of Deep Reinforcement Learning and Transfer Learning in order to tackle the problem of planetary landing on unknown or barely-known extra-terrestrial environments by learning good-performing policies, which are transferable from the training environment to other, new environments, without losing optimality. To this end, we model a real-physics simulator, by means of the Bullet/PyBullet library, composed by a lander, defined through the standard ROS/URDF framework and realistic 3D terrain models, for which we adapt official NASA 3D meshes, reconstructed from the data retrieved during missions. Where such models are not available, we reconstruct the terrain from mission imagery - generally SAR imagery. In this setup, we train a Deep Reinforcement Learning model - using DDPG and SAC, then comparing the outcomes - to autonomously land on the lunar environment. Moreover, we perform transfer learning on Mars and Titan environments. Our results show that DDPG and SAC can learn good landing policies, that can be transferred to other environments. Good policies can be learned by the SAC algorithm also in the case of atmospheric disturbances - e.g. gusts.

Related Publications

Towards a fuller understanding of neurons with Clustered Compositional Explanations

NeurIPS, 2023
Biagio La Rosa*, Leilani H. Gilpin*, Roberto Capobianco

Compositional Explanations is a method for identifying logical formulas of concepts that approximate the neurons' behavior. However, these explanations are linked to the small spectrum of neuron activations used to check the alignment (i.e., the highest ones), thus lacking c…

Memory Replay For Continual Learning With Spiking Neural Networks

IEEE MSLP, 2023
Michela Proietti*, Alessio Ragno*, Roberto Capobianco

Two of the most impressive features of biological neural networks are their high energy efficiency and their ability to continuously adapt to varying inputs. On the contrary, the amount of power required to train top-performing deep learning models rises as they become more …

Explainable AI in drug discovery: self-interpretable graph neural network for molecular property prediction using concept whi…

Machine Learning, 2023
Michela Proietti*, Alessio Ragno*, Biagio La Rosa*, Rino Ragno*, Roberto Capobianco

Molecular property prediction is a fundamental task in the field of drug discovery. Several works use graph neural networks to leverage molecular graph representations. Although they have been successfully applied in a variety of applications, their decision process is not t…

  • HOME
  • Publications
  • Learning Transferable Policies for Autonomous Planetary Landing via Deep Reinforcement Learning

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.