Venue
- CVPR-2021, AI4Space Workshop
Date
- 2021
Autonomous Planetary Landing via Deep Reinforcement Learning and Transfer Learning
Giulia Ciabatti*
Shreyansh Daftry*
* External authors
CVPR-2021, AI4Space Workshop
2021
Abstract
The aim of this work is to develop an application for autonomous landing. We exploit the properties of Deep Reinforcement Learning and Transfer Learning, in order to tackle the problem of planetary landing on unknown or barely-known extra-terrestrial environments by learning good-performing policies, which are transferable from the training environment to other, new environments, without losing optimality. To this end, we model a real-physics simulator, by means of the Bullet/PyBullet library, composed by a lander, defined through the standard ROS/URDF framework and realistic 3D terrain models, for which we adapt official NASA 3D meshes, reconstructed from the data retrieved during missions. Where such model were not available, we reconstruct the terrain from mission imagery - generally SAR imagery. In this setup, we train a Deep Reinforcement Learning model - using DDPG - to autonomous land on the lunar environment. Moreover, we perform transfer learning on the Mars and Titan environment. While still preliminary, our results show that DDPG can learn a good landing policy, which can be transferred to other environments.
Related Publications
Compositional Explanations is a method for identifying logical formulas of concepts that approximate the neurons' behavior. However, these explanations are linked to the small spectrum of neuron activations used to check the alignment (i.e., the highest ones), thus lacking c…
Two of the most impressive features of biological neural networks are their high energy efficiency and their ability to continuously adapt to varying inputs. On the contrary, the amount of power required to train top-performing deep learning models rises as they become more …
Molecular property prediction is a fundamental task in the field of drug discovery. Several works use graph neural networks to leverage molecular graph representations. Although they have been successfully applied in a variety of applications, their decision process is not t…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.