Authors

* External authors

Venue

Date

Share

Is Heterogeneity Notorious? Taming Heterogeneity to Handle Test-Time Shift in Federated Learning

Yue Tan

Chen Chen

Weiming Zhuang

Xin Dong

Lingjuan Lyu

Guodong Long*

* External authors

NeurIPS 2023

2023

Abstract

Federated learning (FL) is an effective machine learning paradigm where multiple clients can train models based on heterogeneous data in a decentralized manner without accessing their private data. However, existing FL systems undergo performance deterioration due to feature-level test-time shifts, which are well investigated in centralized settings but rarely studied in FL. The common non-IID issue in FL usually refers to inter-client heterogeneity during training phase, while the test-time shift refers to the intra-client heterogeneity during test phase. Although the former is always deemed to be notorious for FL, there is still a wealth of useful information delivered by heterogeneous data sources, which may potentially help alleviate the latter issue. To explore the possibility of using inter-client heterogeneity in handling intra-client heterogeneity, we firstly propose a contrastive learning-based FL framework, namely FedICON, to capture invariant knowledge among heterogeneous clients and consistently tune the model to adapt to test data. In FedICON, each client performs sample-wise supervised contrastive learning during the local training phase, which enhances sample-wise invariance encoding ability. Through global aggregation, the invariance extraction ability can be mutually boosted among inter-client heterogeneity. During the test phase, our test-time adaptation procedure leverages unsupervised contrastive learning to guide the model to smoothly generalize to test data under intra-client heterogeneity. Extensive experiments validate the effectiveness of the proposed FedICON in taming heterogeneity to handle test-time shift problems.

Related Publications

FedMef: Towards Memory-efficient Federated Dynamic Pruning

CVPR, 2024
Hong Huang, Weiming Zhuang, Chen Chen, Lingjuan Lyu

Federated learning (FL) promotes decentralized training while prioritizing data confidentiality. However, its application on resource-constrained devices is challenging due to the high demand for computation and memory resources for training deep learning models. Neural netw…

DIAGNOSIS: Detecting Unauthorized Data Usages in Text-to-image Diffusion Models

ICLR, 2024
Zhenting Wang, Chen Chen, Lingjuan Lyu, Dimitris N. Metaxas*, Shiqing Ma*

Recent text-to-image diffusion models have shown surprising performance in generating high-quality images. However, concerns have arisen regarding the unauthorized data usage during the training or fine-tuning process. One example is when a model trainer collects a set of im…

Combating Data Imbalances in Federated Semi-supervised Learning with Dual Regulators

AAAI, 2024
Sikai Bai*, Shuaicheng Li*, Weiming Zhuang, Jie Zhang*, Kunlin Yang*, Jun Hou*, Shuai Yi*, Shuai Zhang*, Junyu Gao*

Federated learning has become a popular method to learn from decentralized heterogeneous data. Federated semi-supervised learning (FSSL) emerges to train models from a small fraction of labeled data due to label scarcity on decentralized clients. Existing FSSL methods assume…

  • HOME
  • Publications
  • Is Heterogeneity Notorious? Taming Heterogeneity to Handle Test-Time Shift in Federated Learning

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.