Weiming
Zhuang

Profile

Weiming is a research scientist in Privacy-Preserving Machine Learning (PPML) at Sony AI. His research interests and expertise span federated learning, AI privacy and security, computer vision, and machine learning systems. Before joining Sony AI, Weiming was a Ph.D. researcher under SenseTime-NTU Talent Programme and received his Ph.D. from Nanyang Technological University. He spent two years in software engineering building large-scale distributed systems and completed his Bachelor's from the National University of Singapore, School of Computing. Weiming has published papers in top-tier conferences and journals, including ICLR, ICCV, etc., and his papers have been selected as oral presentations at top conferences.

Message

My role at Sony AI is to empower Sony with privacy-preserving and robust AI solutions and to contribute to the global discourse with cutting-edge AI research.

Publications

FedMef: Towards Memory-efficient Federated Dynamic Pruning

CVPR, 2024
Hong Huang, Weiming Zhuang, Chen Chen, Lingjuan Lyu

Federated learning (FL) promotes decentralized training while prioritizing data confidentiality. However, its application on resource-constrained devices is challenging due to the high demand for computation and memory resources for training deep learning models. Neural netw…

Combating Data Imbalances in Federated Semi-supervised Learning with Dual Regulators

AAAI, 2024
Sikai Bai*, Shuaicheng Li*, Weiming Zhuang, Jie Zhang*, Kunlin Yang*, Jun Hou*, Shuai Yi*, Shuai Zhang*, Junyu Gao*

Federated learning has become a popular method to learn from decentralized heterogeneous data. Federated semi-supervised learning (FSSL) emerges to train models from a small fraction of labeled data due to label scarcity on decentralized clients. Existing FSSL methods assume…

FedWon: Triumphing Multi-domain Federated Learning Without Normalization

ICLR, 2024
Weiming Zhuang, Lingjuan Lyu

Federated learning (FL) enhances data privacy with collaborative in-situ training on decentralized clients. Nevertheless, FL encounters challenges due to non-independent and identically distributed (non-i.i.d) data, leading to potential performance degradation and hindered c…

Blog

December 13, 2023 | Events

Sony AI Reveals New Research Contributions at NeurIPS 2023

Sony Group Corporation and Sony AI have been active participants in the annual NeurIPS Conference for years, contributing pivotal research that has helped to propel the fields of artificial intelligence and machine learning forwar…

Sony Group Corporation and Sony AI have been active participants in the annual NeurIPS Conference for years, contributing pivotal …

October 6, 2023 | PPML

Advancements in Federating Learning Highlighted in Papers Presented at ICCV 2023

As the field of machine learning continues to evolve, Sony AI researchers are constantly exploring innovative solutions to address the pressing issues faced by the industry. Two research papers, both accepted at the premier intern…

As the field of machine learning continues to evolve, Sony AI researchers are constantly exploring innovative solutions to address…

July 13, 2023 | Life at Sony AI

Meet the Team #8: Weiming Zhuang, Nidham Gazagnadou, Chen Chen

At Sony AI, the Privacy-Preserving Machine Learning (PPML) team focuses on fundamental and applied research in computer vision privacy. Their innovative research aims to apply these novel ideas to real-world AI applications. In th…

At Sony AI, the Privacy-Preserving Machine Learning (PPML) team focuses on fundamental and applied research in computer vision pri…

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.