Authors

* External authors

Venue

Date

Share

TARGET: Federated Class-Continual Learning via Exemplar-Free Distillation

Jie Zhang*

Chen Chen

Weiming Zhuang

Lingjuan Lyu

* External authors

ICCV 2023

2023

Abstract

This paper focuses on an under-explored yet important problem: Federated Class-Continual Learning (FCCL), where new classes are dynamically added in federated learning. Existing FCCL works suffer from various limitations, such as requiring additional datasets or storing the private data from previous tasks. In response, we first demonstrate that non-IID data exacerbates catastrophic forgetting issue in FL. Then we propose a novel method called TARGET (federat\textbf{T}ed cl\textbf{A}ss-continual lea\textbf{R}nin\textbf{G} via \textbf{E}xemplar-free dis\textbf{T}illation), which alleviates catastrophic forgetting in FCCL while preserving client data privacy. Our proposed method leverages the previously trained global model to transfer knowledge of old tasks to the current task at the model level. Moreover, a generator is trained to produce synthetic data to simulate the global distribution of data on each client at the data level. Compared to previous FCCL methods, TARGET does not require any additional datasets or storing real data from previous tasks, which makes it ideal for data-sensitive scenarios.

Related Publications

FedMef: Towards Memory-efficient Federated Dynamic Pruning

CVPR, 2024
Hong Huang, Weiming Zhuang, Chen Chen, Lingjuan Lyu

Federated learning (FL) promotes decentralized training while prioritizing data confidentiality. However, its application on resource-constrained devices is challenging due to the high demand for computation and memory resources for training deep learning models. Neural netw…

DIAGNOSIS: Detecting Unauthorized Data Usages in Text-to-image Diffusion Models

ICLR, 2024
Zhenting Wang, Chen Chen, Lingjuan Lyu, Dimitris N. Metaxas*, Shiqing Ma*

Recent text-to-image diffusion models have shown surprising performance in generating high-quality images. However, concerns have arisen regarding the unauthorized data usage during the training or fine-tuning process. One example is when a model trainer collects a set of im…

Combating Data Imbalances in Federated Semi-supervised Learning with Dual Regulators

AAAI, 2024
Sikai Bai*, Shuaicheng Li*, Weiming Zhuang, Jie Zhang*, Kunlin Yang*, Jun Hou*, Shuai Yi*, Shuai Zhang*, Junyu Gao*

Federated learning has become a popular method to learn from decentralized heterogeneous data. Federated semi-supervised learning (FSSL) emerges to train models from a small fraction of labeled data due to label scarcity on decentralized clients. Existing FSSL methods assume…

  • HOME
  • Publications
  • TARGET: Federated Class-Continual Learning via Exemplar-Free Distillation

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.