Authors

* External authors

Venue

Date

Share

Timbre-Trap: A Low-Resource Framework for Instrument-Agnostic Music Transcription

Frank Cwitkowitz*

Kin Wai Cheuk

Woosung Choi

Marco A. Martínez-Ramírez

Keisuke Toyama*

Wei-Hsiang Liao

Yuki Mitsufuji*

* External authors

ICASSP-2024

2024

Abstract

In recent years, research on music transcription has focused mainly on architecture design and instrument-specific data acquisition. With the lack of availability of diverse datasets, progress is often limited to solo-instrument tasks such as piano transcription. Several works have explored multi-instrument transcription as a means to bolster the performance of models on low-resource tasks, but these methods face the same data availability issues. We propose Timbre-Trap, a novel framework which unifies music transcription and audio reconstruction by exploiting the strong separability between pitch and timbre. We train a single U-Net to simultaneously estimate pitch salience and reconstruct complex spectral coefficients, selecting between either output during the decoding stage via a simple switch mechanism. In this way, the model learns to produce coefficients corresponding to timbre-less audio, which can be interpreted as pitch salience. We demonstrate that the framework leads to performance comparable to state-of-the-art instrument-agnostic transcription methods, while only requiring a small amount of annotated data.

Related Publications

BigVSAN: Enhancing GAN-based Neural Vocoders with Slicing Adversarial Network

ICASSP, 2024
Takashi Shibuya, Yuhta Takida, Yuki Mitsufuji*

Generative adversarial network (GAN)-based vocoders have been intensively studied because they can synthesize high-fidelity audio waveforms faster than real-time. However, it has been reported that most GANs fail to obtain the optimal projection for discriminating between re…

HQ-VAE: Hierarchical Discrete Representation Learning with Variational Bayes

TMLR, 2024
Yuhta Takida, Yukara Ikemiya, Takashi Shibuya, Kazuki Shimada, Woosung Choi, Chieh-Hsin Lai, Naoki Murata, Toshimitsu Uesaka, Kengo Uchida, Wei-Hsiang Liao, Yuki Mitsufuji*

Vector quantization (VQ) is a technique to deterministically learn features with discrete codebook representations. It is commonly performed with a variational autoencoding model, VQ-VAE, which can be further extended to hierarchical structures for making high-fidelity recon…

Enhancing Semantic Communication with Deep Generative Models -- An ICASSP Special Session Overview

ICASSP, 2024
Eleonora Grassucci*, Yuki Mitsufuji*, Ping Zhang*, Danilo Comminiello*

Generative adversarial network (GAN)-based vocoders have been intensively studied because they can synthesize high-fidelity audio waveforms faster than real-time. However, it has been reported that most GANs fail to obtain the optimal projection for discriminating between re…

  • HOME
  • Publications
  • Timbre-Trap: A Low-Resource Framework for Instrument-Agnostic Music Transcription

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.